$\frac{3}{2}$

2

Question	Answer	Mark	Comments
1	$\frac{10-0}{6-4} \text{ or } (m=) \frac{10}{2}$ or $-3-(6-4) \text{ or } -3-2$ or $4-(6-(-3)) \text{ or } -5 \text{ or } (-5,0)$ and $\frac{10-0}{-3-(-5)}$ or $(m=) \frac{10}{2}$ or $0=4m+k \text{ and } 10=6m+k$ and $10-0=6m-4m$ or $2m=10$ or $(m=) 5$	M1	oe method to find the gradient of either line implied by $y = 5x$ any letters
	10 = their $5 \times (-3) + c$ or $(c =) 5 \times (6 - (-3)) - 20$ or $(c =) 25$ or $y - 10 =$ their $5(x - (-3))$ or $y = 5(x + 9) - 20$ or $5x + 25$	M1dep	oe .
	y = 5x + 25	AT	
	Ade	ditional G	uidance
	Do not allow further incorrect work, eg $y = 5x + 25$ and then $y = x + 5$		25 and then $y = x + 5$ M1M1A0

B1

Q	Answer	Mark	Comn	nents	
	(Gradient of $PQ = $) $\frac{14-8}{2-6}$ or $\frac{8-14}{6-2}$ or -1.5 or $\frac{-3}{2}$ or (gradient of $QR = $) $\frac{8-5}{6-2}$ or $\frac{5-8}{2-6}$ or 0.75 or $\frac{3}{4}$ or $\frac{-3}{-4}$	M1	ое		
3	(Gradient of $PQ = 1.5$ or $\frac{-3}{2}$ and (gradient of $QR = 10.75$ or $\frac{3}{4}$ or $\frac{-3}{-4}$	M1dep	oe		
	No and –1.5 × 0.75 ≠ –1 or No and –1.5 × 0.75 = –1.125	A1ft	eg No and $\frac{-3}{2}$ × ft their two gradier scored accept No and -1, negative reciproca	nts with M1	
	Addition	nal Guidar	nce		
	Accept $-\frac{3}{2}$ or $\frac{3}{-2}$ for $\frac{-3}{2}$				
	Gradient of $PQ = \frac{-3}{2}$, gradient of $QR = \frac{4}{3}$, No and $\frac{-3}{2} \times \frac{4}{3} = -2$ M1M				
	Answers involving Pythagoras' theorem or	scale drav	wing	M0M0A0	

Q	Answer	Mark	Comments
	$\frac{15-8}{6-2}$ or $\frac{7}{4}$	M1	oe eg $\frac{8-15}{2-6}$ or 1.75 may be embedded in an attempt at equation of line eg $y = \frac{7}{4}x$ may be implied
4	$-1 \div \text{their } \frac{7}{4} \text{ or } -\frac{4}{7}$ or $\frac{17-9}{x-0} \times \text{their } \frac{7}{4} = -1$	M1	oe allow [-0.57143, -0.57] may be embedded in an attempt at equation of a line eg $y = \text{their} -\frac{4}{7}x$
	$17 - 9 = \text{their} - \frac{4}{7}x$ or $-4x = 56$ or $56 \div -4$	M1dep	oe equation must be of the form $ax = b$ (b can be unprocessed) dep on 2nd M1
	-14	A1	

	Additional Guidance			
	The second mark is not dependent on the first – see examples below			
	(gradient of line through given points =) $\frac{6-2}{15-8} = \frac{4}{7}$			
	(gradient of perpendicular line =) $-\frac{7}{4}$	M1		
	$17 - 9 = -\frac{7}{4}x$	M1		
	(gradient of line through given points =) $-\frac{7}{4}$	MO		
4	$\frac{17-9}{x} \times -\frac{7}{4} = -1$	M1		
cont	-56 = -4x	M1		
	(gradient of line through given points =) $\frac{7}{4}$	M1		
	(gradient of perpendicular line =) $\frac{4}{7}$	МОМО		
	Condone use of letters for gradients eg $x = 1.75$	M1		
	For the first two marks, condone inclusion of x in their gradients			
	Answer -14 that comes from rounding or truncating cannot score A1 eg1 (perp grad =) -0.57 8 = $-0.57x$ Answer -14	M3A1		
	eg2 (perp grad =) -0.57 8 = $-0.57x$ = -14.03 Answer -14	M3A0		

Q	Answer	Mark	Comments
	Alternative method 1 – using the eq	uations o	of the lines
	$\frac{22 - y}{8 - 0} = 2$ or $22 = 2 \times 8 + c$		oe equation using any letter y is the y-coordinate of P
	or $(c =) 22 - 2 \times 8$ or $c = 6$ or P is at $(0, 6)$ or $(PR =) y = 2x + 6$	M1	ignore missing brackets
	or y-coordinate of P is 6 or y-coordinate of Q is 6		may be seen on diagram may be seen on diagram
	$2m = -1$ or $(m =) -\frac{1}{2}$	M1	oe gradient of RQ
5	$22 = \text{their} - \frac{1}{2} \times 8 + c$ or $22 = -4 + c$ or $c = 26$	M1dep	oe equation in <i>c</i> dep on previous mark
	or $(RQ =) y = -\frac{1}{2}x + 26$		oe equation of RQ
	their $(-\frac{1}{2}x + 26)$ = their 6		oe equation in x where x is the x-coordinate of Q
	or x-coordinate of Q is 40	M1dep	dep on M3 $-\frac{1}{2} = \frac{22 - \text{their } 6}{8 - x} \text{ implies M4 if their 6 is correct or from correct working}$
	(40, 6)	A1	

	Alternative method 2 – using simil	ar triangle	s
	Drops a perpendicular from R to point S on PQ		any or no letter
	and	M1	
	uses $RS = 2PS = 16$ to work out that P is at $(0, 6)$		eg 22-2 × 8
	2 <i>m</i> = -1		oe
	or $(m =) -\frac{1}{2}$	M1	gradient of RQ
	or		
5	$\frac{RS}{SQ} = \frac{1}{2}$		
cont	16 × 2 or 32		length of SQ
		M1dep	may be seen on diagram
			dep on previous mark
	8 + their 32		
	or	M1dep	
	x-coordinate of Q is 40		
	(40, 6)	A1	
	Α	dditional (Guidance
	Note that 40 (for the <i>x</i> -coordinate of if 6 is also seen (on alt 1)	f Q) implies	M3 (on alt 2) and implies M4

	13 = 7a - 1 or $(a =) 2$	M1	oe eg $\frac{131}{7-0}$ may be implied eg $(y =) 2x$	- 1	
	$(y =) \frac{3}{5}x \dots$ or (gradient B =) $\frac{3}{5}$	M1	oe eg (gradient B =) 0.6 allow $(y =) \frac{3x + 4}{5}$		
	gradient A = 2 and gradient B = $\frac{3}{5}$	A1	oe eg $2 > \frac{3}{5}$ condone $2x > \frac{3}{5}x$		
	Additional Guidance Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts				
6	Condone incorrect y-intercept				
	eg $a = 2$ $y = \frac{3}{5}x + 4$			M1M1	
	gradient A = 2 gradient B = $\frac{3}{5}$			A1	
It must be clear that the values 2 and $\frac{3}{5}$ are being used to answer the question to award A1					
	eg1 gradient A = 2 and gradient B =	$=\frac{3}{5}$ (no	statement needed)	M2A1	
	eg2 $a = 2$ $y = \frac{3}{5}x + \frac{4}{5}$			M2A0	
	eg3 $y = 2x - 1$ and $y = \frac{3}{5}x + \frac{4}{5}$	2 is grea	ter than $\frac{3}{5}$	M2A1	
	eg4 $y = 2x - 1$ and $y = \frac{3}{5}x + \frac{4}{5}$	gradient	of A > gradient of B	M2A0	
	13 = 7x - 1 or $x = 2$ must be recovered to award 1st M1				

Q	Answer	Mark	Comment
	Alternative method 1		
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient
	$8 = \text{their} - \frac{1}{2} \times 4 + c$ or $c = 10$	M1dep	oe equation in c (any letter) dep on previous mark
7	$0 = \text{their} - \frac{1}{2}x + \text{their } 10$	M1	oe equation in x ft their equation of the form $y = mx + c$ where m and c are numbers $\neq 0$
,	20	A1	condone (20, 0)
	Alternative method 2		
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient
	$\frac{8-0}{4-x} = \text{their} - \frac{1}{2}$	M1dep	oe equation in <i>x</i> dep on previous mark
	their $2 \times (8 - 0) = \text{their } -1 \times (4 - x)$ or $16 = -4 + x$	M1dep	oe linear equation in x
	20	A1	condone (20, 0)

	Alternative method 3			
	$\frac{8-0}{4-0}$ or 2	M1	oe gradient from origin to point	
	$-\frac{1}{2}$ or $y = -\frac{1}{2}x$	M1	oe gradient of tangent negative inverse of their gradient	
	$y - 8 = \text{their} - \frac{1}{2} \times (x - 4)$	M1dep	oe equation eg $x + 2y = 20$ dep on previous mark	
_	$0 - 8 = \text{their} - \frac{1}{2} \times (x - 4)$	M1	oe linear equation in x ft their equation in y and x	
7 (cont)	20	A1	condone (20, 0)	
	Alternative method 4			
	$4^2 + 8^2$ and $(x-4)^2 + 8^2$	M1		
	$x^2 = 4^2 + 8^2 + (x - 4)^2 + 8^2$	M1dep	oe equation in x	
	$x^2 = 16 + 64 + x^2 - 8x + 16 + 64$	M1dep	oe equation in \boldsymbol{x} with brackets expanded and squares evaluated	
	8x = 16 + 64 + 16 + 64 or $8x = 160$	M1dep	oe linear equation in x	
	20	A1	condone (20, 0)	

Q	Answer	Mark	Commen	its
	$-\frac{5}{4}$ or $-1\frac{1}{4}$ or -1.25	B2	B1 $\frac{5}{4}$ or $1\frac{1}{4}$ or 1.25 or $x+4$ and $y-5$ or possible coordinates for or shown on a diagram eg $P(0, 5)$ and $Q(4, 0)$ or right-angled triangle sho horizontal length and 5 a	wn with 4 as
	Additional Guidance			
	B1 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts			
8	Ignore attempts at rounding after correct answer seen			
	Accept $\frac{-5}{4}$			B2
	Condone $\frac{5}{-4}$			B2
	(x+4) (y-5)			B1
	x + 4 and $y - 5$ may be seen embed	ded in a fr	action	
	eg $\frac{y - (y - 5)}{x - (x + 4)}$ or $\frac{y - (y - 5)}{x + (x + 4)}$			B1
	$-\frac{4}{5}$			В0
	<u>4</u> <u>5</u>			B0

Q	Answer	Mark	Comments
	$(m_1 =) \frac{-7 - 9}{35}$ or $(m_1 =) \frac{97}{-5 - 3}$ or -2	M1	gradient of AC
	$-1 \div \text{their} -2 \text{ or } \frac{1}{2}$	M1	gradient of line perpendicular to AC their -2 must be identified as a gradient $\frac{1}{2}$ implies M1M1
9(a)	$-7 = \text{their } \frac{1}{2} \times 3 + c \text{ or } (c =) -8.5$ or $y7 = \text{their } \frac{1}{2}(x - 3)$	M1dep	oe condone any letter for <i>c</i> dep on 2nd M1
$y = \frac{1}{2}x - 8.5$	$y = \frac{1}{2}x - 8.5$	A1	oe eg $2y = x - 17$
	Additional Guidance		
	Check part (a) for working for part (b)		